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Space, Time, and Velocity in Cosmology 
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In the limit of negligible gravity, a transformation that relates physical quantities 
at different cosmic times, similar to the Lorentz transformation which relates 
measurements at different velocities, is derived. 

1. INTRODUCTION 

In prerelativistic physics it was assumed that space is not related to 
time; a "stationary" frame of reference was presumed to exist with respect 
to which all physical phenomena can be described. 

As Einstein (1905) showed, this picture was wrong; space has no prefer- 
ence of a particular frame or any other one that moves with a constant 
velocity, and in this way one can accommodate the fact that light propagates 
with a constant velocity in all moving systems. The mixture of space and 
time became a necessity in order to preserve the constancy of the propagation 
of light in all inertial frames. The mathematical expression of this fact is given 
by the familiar Lorentz transformation, which was rederived by Einstein, who 
also gave to it the correct physical interpretation. 

As Bernard Russell said, "Einstein's theory of relativity is probably the 
greatest synthetic achievement of the human intellect up to the present time." 

2. FUNDAMENTALS OF SPECIAL RELATIVITY 

The essence of the theory of special relativity, according to Einstein 
(1979), is as follows: 

According to the rules of connection, used in classical physics, between the 
spatial coordinates and the time of events in the transition from one inertial 
system to another, the two assumptions of 
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(1) the constancy of the light velocity 
(2) the independence of the laws (thus especially also of the law of the 

constancy of the light velocity) from the choice of inertial system 

are mutually incompatible (despite the fact that both taken separately are based 
on experience). 

The insight fundamental for the special theory of relativity is this: The 
assumptions (1) and (2) are compatible if relations of a new type (Lorentz 
transformation) are postulated for the conversion of coordinates and times of 
events. With the given physical interpretation of coordinates and time, this is by 
no means merely a conventional step but implies certain hypotheses concerning 
the actual behavior of moving measuring rods and clocks, which can be experimen- 
tally confirmed or disproved. 

The universal principle of the special theory of relativity is contained in the 
postulates: The laws of physics are invariant with respect to Lorentz transforma- 
tions (for the transition from one inertial system to any other arbitrarily chosen 
inertial system). This is a restricting principle for natural laws, comparable to 
the restricting principle of the nonexistence of the perpetuum mobile that under- 
lies thermodynamics. 

3. P R E S E N T - D A Y  C O S M O L O G Y  

At present we have a s imilar  situation in cosmology  to that existing in 
the prerelativistic era with respect  to space and (not velocity, but) cosmic 
time, in conjunction with the constancy o f  expansion of  the universe (and 
not propagat ion of  light). I f  we  take the convent ion according to which cosmic 
time, denoted by t, is measured  backward,  then our  present  t ime (t = 0) is 
a preferred t ime with respect  to which all cosmological  physical  phenomena  
are referred. This is exact ly  analogous to the prerelativity assumpt ion that 
physical  phenomena  referred to only one "stat ionary" (v = 0) system. 

Actually, space has no such preference: When  we consider  an astronomi- 
cal object  and say that it is, say, at t = "r/2, where T = lIHo is Hubble ' s  time, 
that faraway object  has the same right to say that it is at cosmic t ime zero 
(t = 0) and we are at t = "r/2 with respect  to it, exact ly  as in relativistic 
physics,  but with the roles o f  cosmic t ime and veloci ty exchanged.  We will 
assume that such a reciprocity relationship between cosmologica l  objects is 
a universal  property o f  space and cosmic  time, just  as Einstein did with 
respect  to space and veloci ty in special relativity. 

4. P O S T U L A T E S  

In addition, we will make  two assumptions  which will be elevated to 
postulates. These  are: (1) The principle of the constancy of the expansion of 
the universe (expressed by  Hubb le ' s  law) at all cosmic  t imes (analogous to 
the principle of  the constancy of  propagat ion of  light in all moving  frames);  
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and (2) the principle of cosmological relativity (analogous to the principle 
of special relativity) according to which the laws of physics are the same at 
all cosmic times (at moving frames in special relativity). 

5. COSMIC FRAMES 

In this way the universe has cosmic frames of reference located at fixed 
cosmic times and differing from each other by relative constant cosmic times, 
similar to the situation in special relativity, but now with cosmic times 
replacing velocities. Observers in each cosmic frame are equipped with a 
ruler to measure distance (as in special relativity) and with a small radar 
device (similar to that used by the highway patrol) for velocity measurements 
(instead of clocks in special relativity). 

Notice the analogy between the relation [x] = distance/velocity in the 
present theory and [c] = distance/time in special relativity, which suggests 
the choice of distance and velocity as our fundamental variables as compared 
to distance and time in special relativity. 

Remark. The constant a" is used by us just as the constant c is used in 
special relativity even though it is well known that both the speed of light 
and the rate of expansion of the universe change their values due to gravity. 
This is possible since local measurements of both the velocity of light and the 
rate of expansion of the universe always yield constant c and "r, respectively. 

6. SPACE AND VELOCITY IN COSMOLOGY 

With the above postulates, and by comparison with special relativity, it 
is obvious that space and velocity cannot be independent if Hubble's law is 
to be preserved at all cosmic times. In fact this will enable us to derive a 
transformation that relates space points and velocities (and other quantities) 
measured in different cosmic frames of reference that differ in relative cosmic 
times, just like the Lorentz transformation, which relates space points and 
time (and other quantities) measured in different inertial frames that differ 
in relative velocities. Space coordinates and velocities become unified in 
cosmology just as space and time are unified in local (noncosmological) 
physics. 

7. PRESPECIAL RELATIVITY 

With the above preliminaries we are now in a position to develop our 
theory. To begin with, we repeat very briefly what preceded special relativity. 
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The Galilean transformation between two inertial systems K and K' ,  where 
K '  moves relative to K with a constant velocity v along the x axis, is given by 

x '  = x -  v t ,  t '  = t,  y '  = y ,  z '  = z 

Here x and x' represent the coordinates of  a particle in the systems K and 
K ' ,  respectively. 

The trouble with the Galilean transformation is its incompatibility with 
the equation of propagation of  light, which satisfies 

c2 t  '2 - -  X '2 = C 2t2 - -  X2, y '  = y ,  Z' = Z 

Hence the Galilean transformation should be replaced by a new one that 
relates not only x' to x leaving t unchanged, but relates x '  a n d  t '  to x a n d  t. 

And this immediately leads to the familiar Lorentz transformation. 

8. RELATIVE COSMIC T I M E  

In cosmology one is not interested in comparing quantities at two refer- 
ence frames moving with a constant velocity with respect to each other. 
Rather, one is interested in comparing quantities in two different cosmic 
times. For example, one often asks what was the density of matter or the 
temperature of the universe at an earlier time t as compared to the values of 
these quantities at our present time now (t = 0). The backward time t is the 
r e l a t i v e  time with respect to our present time. 

The concept of  the relative time is not restricted only to the backward 
time t with respect to the present time (t = 0). Every two observers with 
times t~ and t2 with respect to us are related to each other by a relative time 
t. Thus t plays the role of  the velocity v in special relativity and we will see 
in the sequel that t has an upper limit, which is the Hubble time "r, just as 
the maximum velocity permitted in special relativity is c. 

The variables (coordinates) in this theory are naturally the Hubble vari- 
ables, i.e., the velocity v and the distance x. To derive the transformation 
between these variables in the systems K and K' ,  where K '  has a relative 
time t with respect to K, we proceed as follows. 

9. INADEQUACY OF CLASSICAL T R A N S F O R M A T I O N  

We first do this classically, and for simplicity it is assumed that the 
motion is one-dimensional. Denoting the coordinates and velocities in the 
systems K and K '  by x, v and x' ,  v', respectively, then 

x' = x - t v ,  v' = v ,  y'  = y ,  z' = z  

where v is assumed to be constant. The x's and v's in these equations represent 
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the coordinates and velocities not for just one particle, but for as many as 
one wishes, with t the same for all of them. 

The above transformation does not satisfy the equation of expansion of 
the universe, which, according to the principle of the constancy of expansion 
of the universe and the principle of cosmological relativity demanding the 
laws of physics (and in particular Hubble's law) to be valid at all cosmic 
times, satisfies 

T2~12 __ Xt2 = T21,2 __ X 2, yl = y, Z' = Z 

The situation here is similar to what we had at the beginning of the century, 
where the Galilean transformation could not accommodate both the principle 
of special relativity and the principle of the constancy of the speed of light, 
leading to the Lorentz transformation. A new transformation here also has 
to be found which relates not only x' to x leaving v unchanged, but relates 
x '  a n d  v '  to x and v. 

10. UNIVERSE EXPANSION VERSUS L I G H T  PROPAGATION 

Under the assumption that Hubble's constant is constant in cosmic time, 
there is an analogy between the propagation of light, x = ct ,  and the expansion 
of the universe, x = xv, where "r is the Hubble time, a constant which is also 
the age of the universe under the above assumption, and c is the speed of 
light in vacuum. Thus one can express the expansion of the universe, assuming 
that it is homogeneous and isotropic, in terms of a null vector satisfying 

X2 + y2 + Z 2 _ T2V2 : 0 ( l )  

where v is the receding velocity of the galaxies. Equation (l), in the four- 
dimensional flat space of the Cartesian three-space and velocity, is similar to 

x 2 + y 2  + z  2 _ c 2 t  2 = 0  (2) 

for the null propagation of light in Minkowskian spacetime. We assume, 
furthermore, that a relationship of the form (l)  is valid at all cosmic times. 
Thus, at a cosmic time t' at which the coordinates and velocity are labeled 
with primes, we have 

X,2 + y ,2  + Z,2 _ T21),2 = 0 (3) 

with the same a', just as for light emitted from a source with velocity v with 
respect to the first one, 

X,2 + y,2 + Z,2 _ C2t,2 = 0.  (4) 

Accordingly, we have a four-dimensional space with zero curvature of x, y, 
z, v just like the Minkowskian spacetime of x, y, z, t. 
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We now assume that at two cosmic times t and t' we have 

x,2 + y,2 + z,2 _ ,r2v,2 = x 2 + y2 + z 2 _ ,r2v 2 (5) 

in analogy to the special-relativistic formula 

x , 2  + y , 2  + z , 2 _  c2t  , = x  2 + y 2  + z  2 _ c 2 t  2 (6) 

The question is then, what is the transformation between x',  y ' ,  z', v' 
and x, y, z, v that satisfies the invariance formula (5)? 

11. DERIVATION OF T H E  T R A N S F O R M A T I O N  

For simplicity we again assume that the motion is along the x axis. 
Hence Hubble's law in the systems K and K '  is given by 

x = "rv, x'  = "rv' (7) 

where x, v and x ' ,  v' are measured in K and K ' ,  respectively. Assuming now 
that x, v and x' ,  v' transform linearly, then 

x '  = a x  - b v  (8) 

x = a x '  + b v '  (9) 

where a and b are some variables which are independent of the coordinates. 
At x'  = 0 and x = 0, equations (8) and (9) yield, respectively, 

b x 
. . . .  t (10) 
a v 

a n d  

b x I 
- = t ( 1 1 )  

a IP ~ 

Using now equations (7)-(9), we obtain 

aT = x = a x '  + b y '  = a x v '  + b y '  = (a 'r  + b ) v '  (12a) 

and similarly 

aT'  = (a 'r  - b ) v  (12b) 

Eliminating v and v' from equations (12a) and (12b) and using b = a t  

from equation (10), we get 

.r 2 = aZ(x  2 - t 2) (13) 

o r  

a = 1/(1 - t2/x2) u2 (14) 
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and therefore 

b = tl(1 - t2/T2) 1/2 (15) 

Inserting these results in equations (8) and (9), we obtain 

X - -  IV V - -  x t l T  2 
X t - -  Vr - -  

(1  - -  /'2/7"2) 1/2'  ( l  - -  t2/T2) 1/2 (16) 

y'  = y ,  z' = z  

X '  "}" t v '  V '  "q- X t  t / T  2 

X - -  (1 - -  t2/T2) 1/2'  V - (1 - t2/T2) t~ (17) 

y = y ' ,  z = z' 

and 

for the inverse transformation. 

12. INTERPRETATION OF THE T R A N S F O R M A T I O N  

Equations (16) give the transformed values of  x and v as measured in 
the system K '  with a relative time t with respect to K. The roles of  the time 
and the velocity are exchanged as compared to special relativity. This fits 
our needs in cosmology, where one measures distances and velocities at 
different times in the past. The parameter t i t  replaces vie of special relativity. 

It should be emphasized that the transformation (16) is not a trivial 
exchange of v/c, appearing in the Lorentz transformation, and t i t  here. For 
example, the red shift z = vie at low velocities, but is certainly not equal to 
t i t  for small tiT. (Details of the red shift are given below.) 

13. A N O T H E R  DERIVATION 

The transformation (16) could also have been derived as in the standard 
derivation of  the Lorentz transformation by writing 

X '2 - -  T2V '2 ~-- X 2 - -  T2V 2 ( 1 8 )  

whose solution is 

At x '  = 0 we obtain 

x' = x cosh * - v'r sinh * 

v' = v cosh * - (x/T)sinh * 

(19) 

tanh t~ = xl'rv = tl'c (20) 
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and therefore 

t/'T 
sinh ~ - (1 - / 2 1 T 2 ) 1 / 2  (21a) 

1 
c o s h ,  - (1 - t 2 / T 2 )  1/2 (21b) 

which lead to the transformation (16). 
The geometrical description o f  the galaxy cone in the present theory 

and its comparable light cone in special relativity are given in Figs. 1 and 

~ V  

_I_--[ 
EX' AIND'NG - 

"~ UNIVERSE 

% ) .  t ' - ~  f._~" 

I %,~ 

f f ; - - -  \ 
CON+R C+ING ' N N 

" ~  UNIVERSE j 

Fig. 1. The galaxy cone in the x - v  space satisfying x 2 - "rev 2 = 0 in cosmological special 
relativity. The dots represent galaxies. The cone represents the location of the galaxies rather 
than their path of motion. 
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2. Note that while the light cone expresses the actual motion of light in 
spacetime, the galaxy cone describes the accumulation or distribution of 
galaxies in the space-velocity. 

14. CONSEQUENCES OF  T H E  T R A N S F O R M A T I O N  

In the following we draw some consequences of the transformations 
(16) and (17). 

14.1. Classical  Limit  

Assuming that t is much smaller than % one can neglect t 2 with respect 
to x 2, and the transformation (16) gives 

- -  X 

f 
Fig. 2. The light cone in the x - t  space of ordinary special relativity. 
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x '  = x - tv, v'  = v, y '  = y, z '  = z (22) 

which is exactly the transformation obtained from classical mechanics. 

14.2. Length Contraction 

Suppose there is a rod located in the K system parallel to the x axis. 
Let its length measured in this system be Ax = x2 - x~, where xz and x l  are 
the coordinates of  the two ends of the rod. To determine the length of this 
rod as measured in the K '  system we must find the coordinates of  the two 
ends of  the rod x[ and x~ in this system at the same velocity v' .  From (17) 
we have 

x [ + t v  t + tv' 
Xl (1 - t2/~) u2'  x2 (1 - t2/'r2) 1/2 

The length of the rod in the K '  system is Ax' = x~ - x[; thus 

Ax' 
A x -  

(1 - t217"2) 1/2 

The proper length of  a rod is its length in the system in which it is 
located. Let us denote it by Lo = Ax and the length of  the rod in any other 
system K '  by L. Then 

L = Lo(1 - t2/'r2) 1/2 (23) 

Thus a rod has its greatest length in the system in which its relative time 
with respect to the system is zero; its length in a system in which it is located 
at a relative time t with respect to that system is decreased by the factor (1 
- -  t2 / ' r2)  it2. This result of  the present theory is exactly similar to the familiar 
Lorentz contraction with the factor (1 - v2/c2) u2 in special relativity. 

14.3. Velocity Contraction 

Suppose a velocity-measuring instrument is located at x '  = 0 in the K '  
system. Then from (17) we have 

V t 

v - (1 - ill'r2) 1/2 (24) 

Denote now v by Vo and v'  by v; we obtain 

v = Vo(1 - tZ/'r2) u2 (25) 

The above result is like the time dilation in special relativity and was 
expected, since time in special relativity goes over to velocity in the present 
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theory. The velocity measured by an observer with a relative time t with 
respect to us is smaller by the factor (1 - t2/'r2) ~/2 than what is observed by 
u s a t t  = 0. 

R e m a r k  on  D a r k  Mat ter .  As is well known, much of the support for the 
existence of dark matter is due to the observed very high velocities of gas 
molecules or galaxies. For example, galaxies in the far-off Coma cluster are 
observed whirling around one another faster than the laws of  physics would 
allow. So is the mysteriously rapid rotation of  spiral galaxies. Equation (25) 
clearly shows that the velocity observed by us is not the velocity measured 
by a local observer at a relative time t with respect to us. This observer 
measures a smaller velocity, and the further back in time, the more the velocity 
decreases. Does this mean that the hypothetical dark matter can be abolished 
just as the "luminiferous ether" was p r o v e d t o  be superfluous by special 
relativity? We will see in a coming paper that this is not so. 

14.4. Addit ion o f  Times  

Dividing the first of  (17) by the second, we find, choosing t = h, 

x x '  -I- tl v~ 
m 

v v '  + ( t l l r2 )x  ' (26) 

or, dividing the numerator and the denominator of the fight-hand side of  this 
equation by v', we obtain 

tl + t 2  
t -  1 + ht21"r 2 (27) 

where t2 = x ' / v '  and  t = x/v .  

Equation (27) determines the transformation of  time and describes the 
law of  composition of  times in cosmological relativity. In the limiting case 
of  t much smaller than "r, equation (27) goes over into the formula t = t I q- 
t2 of classical physics. 

We see that the simple law of  adding and subtracting cosmic times is 
no longer valid, or, more precisely, is only approximately valid for short 
times with respect to us, but not for those near the Hubble time, which is 
also the age of the universe in this case. Consider two consecutive events 
that occur at h = (9/10)a" and t = (180/181)-r both with respect to us (at t 
= 0), for example, with respect to the first event the second one does not  
occur at t - h - "r/10, but rather at 

t - h 9 
t2 = 1 - thl 'r  2 -  10"r 

which is much longer than t - h and happens to be exactly equal to t~. We 
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also notice that the past cosmic time cannot be greater than "r, the age of  the 
universe. This is similar to what we have in special relativity, where the 
velocity cannot exceed c. It will be noted that one may add as many subsequent 
time intervals as one wishes without ever reaching the age of the universe "r. 

14.5. The Line Element 

This is given by 

,I .2 d v  2 - -  (dx  2 § dy 2 § dE 2) -~ ds  2 

Hence 

- + + = u~ _ ,~)(~v~ ~ 

\d# L\)~ \~1 \~)J\~} \d# 

(28) 

= 1 (29) 

Multiplying this equation by p~, the matter density of  the universe at the 
present time, we obtain for the matter density at a past time t 

dv Po 
O = "rOOds (1 - -  /21"r2).1/2 (30) 

Remark.  Since the volume of the universe is inversely proportional to 
its density, it follows that the ratio of  the volumes at two backward times tl 
and t2 with respect to us is given by (t2 < fi) 

For times tl and t2 very close to x we can assume that "r + t2 ~ "r + fi 
2"r. Hence 

= \r,) 

where Tl = "r - tl and T2 = a" - t2. For 7"2 - TI ~ 10 -32 sec and T2 < <  
1 sec, we then have 

V2/V l ~ (1 + 10-32/T1)  1 / 2 ~  (10-32/T1)  l / 2 =  10-16IT[/2 

For /'1 - -  10 -132 sec we obtain V2 -- 105~ This result agrees with an 
inflationary universe without assuming any specific model (such as that the 
universe is propelled by a sort of  antigravity) (Guth, 1981; Linde, 1982). 
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14.6. Minimal Acceleration in Nature 

From equation (10) we have 

t = x l v  = d x / d v  = v i a  

where a is the acceleration. Hence 

tmax = "r = (v /a)m~x = clash 

In nature there is a minimal acceleration 

amin = cr -1 -- 10 -8 crn/sec 2 

Note that such a minimal acceleration constant was proposed previously, but 
without an explanation for its origin (Milgrom, 1983). 

14.7. Cosmological Red Shift 

The wavelength of light is inversely proportional to the interval of length 
as measured by two observers at different cosmic times. The result is h/h0 
= (1 - t2/'r2) -u2. Thus the wavelength of light emitted from a source back 
in time increases as compared to its value as observed on earth. For t l x  < < 

1, we have z = Mko - 1 -- t212x 2. 

15. C ONC LUDING REMARKS 

The above cosmological special relativity corresponds to a universewith 
zero curvature, i.e., 1~ = P/Pc = 1; thus p = Pc = 3/8 "rrG'r2 ~ 10 -29 g/cm 3, 
a few hydrogen atoms per cubic meter, is the vacuum energy density, and p 
is the mean mass density. Due to the flatness of the space-velocity in this 
particular case, and only in this case (other cases are f l  > 1 and 1~ < 1), a 
cosmological special relativity could be developed, since in the f l  > 1 and 
f l  < 1 cases the space-velocity is not flat. In a sense the theory presented 
here is half-dynamical, since p ~ 0, as opposed to ordinary special relativity, 
which in a sense can be considered as kinematical. It is for this reason 
that we could obtain results similar to those obtained from the inflationary 
universe model. 

It appears, furthermore, that space, time, and the Hubble expansion of  
the universe can be unified into one group of  five-dimensional transformations 
that leave invariant the quadratic form 

c2t 2 _ ( x  2 + y 2 + z  2) +.r2v 2 = I n v  

When the velocity v is constant the reference frame is inertial and we are 
left with the homogeneous Lorentz group. At a fixed instant of time, on the 
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other  hand, we  are left with the cosmolog ica l  group and the reference f rame 
is cosmic .  [For  more  detai ls  on this uni f ica t ion  see Carmel i  (1995).] 

R E F E R E N C E S  

Carmeli, M. (1995). Communications in Theoretical Physics, 4, 109. 
Einstein, A. (1905). Annalen derPhysik, 17, 891 [reprinted in H. A. Lorentz et al., The Principle 

of  Relativity, Methuen, London (1923)]. 
Einstein, A. (1979). Autobiographical notes, in Albert Einstein: Philosopher-Scientist, P. A. 

Schilpp, ed., Open Court, La Salle, Illinois, Vol. 1, p. 1. 
Guth, A. H. (1981). Physical Review D, 23, 347. 
Linde, A. D. (1982). Physics Letters, 11611, 335. 
Milgrom, M. (1983). Astrophysical Journal, 1983, 270, 365, 371,384. 


